
The three-electron quantum dot studied using hyperspherical coordinates

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1997 J. Phys.: Condens. Matter 9 10901

(http://iopscience.iop.org/0953-8984/9/49/009)

Download details:

IP Address: 171.66.16.209

The article was downloaded on 14/05/2010 at 11:46

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/9/49
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter9 (1997) 10901–10907. Printed in the UK PII: S0953-8984(97)81902-9

The three-electron quantum dot studied using
hyperspherical coordinates

W Y Ruan†‡§ and Ho-Fai Cheung‡
† Department of Applied Physics, South China University of Technology, Guangzhou 510641,
People’s Republic of China
‡ Department of Physics And Material Science, City University of Hong Kong, Kowloon, Hong
Kong

Received 17 February 1997, in final form 24 September 1997

Abstract. The hyperangular equation for three particles interacting via an inverse-square
potential in a harmonic well was solved numerically by using the correlated hyperspherical
harmonics as basis functions. The implications of permutational and rotational symmetries
were analysed in detail. Some of the qualitative features of low-lying states were found to be
determined completely by symmetries.

With molecular-beam epitaxy, experimentalists are now able to create quantum dots in
semiconductors, each containing only a small number of electrons (N = 1, 2, 3, . . .) and
having discrete energy levels [1]. Such an artificially fabricated atomic system shows
interesting many-body effects in a strong magnetic field. Series ofmagicnumbers of angular
momentum which minimize the interaction energy have been found. The ground-state
energy has been measured in some recent experiments as a function of external magnetic
field [1, 2]. This has stimulated extensive theoretical studies. Already, several methods
have been proposed for obtaining the approximate ground-state energy of a quantum dot
in a magnetic field by phenomenologically constructing the variational ground-state wave
functions [3–5]. Exact numerical diagonalizations have also been carried out for systems
containing a few electrons by using the Slater determinants composed of harmonic oscillator
functions to obtain the ground-state energies [6, 7].

Recently [8, 9], Johnson and Quiroga suggested the use of an inverse-square potential,
β/r2 (β is the strength parameter), for the effective electron–electron interaction in the dots,
and the introduction of hyperspherical coordinates to describe the system. With parabolic
confinementm∗ω0r

2/2 (m∗ is the effective electron mass,ω0 is a strength parameter) and
a perpendicular magnetic fieldB, the relative-motion Schrödinger equation forN electrons
is then separated into a hyper-radial equation and a field-independent angular equation [8]:{
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where: ξ2 =∑N
i=1µiη

2
i /m

∗, whereξ is the hyper-radius,{ηi} is a set of Jacobi coordinates
andµi is the corresponding reduced mass;

ω =
√
ω2

0 + ω2
c/4

whereωc = eB/m∗ is the cyclotron frequency;L is the angular momentum for relative
motion (which was denoted byJ in reference [8]);0(�) is the grand orbital operator;
andU(�) = m∗β

∑
i>j ξ

2/r2
ij is the interaction energy of theξ = 1 hypersphere times

the particle mass, where� denotes all of the angular variables for brevity. Physically,
ξ measures the size, while� describes the shape and orientation of the system. The
separability of the Schrödinger equation into equation (1) and (2) implies that changes
of size and shape proceed independently. Only systems with quadratic and/or inverse-
square pairwise interactions possess this property. Equation (1) is exactly solvable and
its eigenvalue isErel = h̄ω(2n + λ + N − 1) + h̄ωcL/2 (n = 0, 1, 2, . . .). For N > 2,
equation (2) cannot be solved analytically without further simplification. In reference [8],
Johnson and Quiroga found a set of approximate analytical solutions that are valid in the
Wigner crystal regime (i.e. the large-β limit). However, since currently studied quantum
dots are, like a fractional quantum Hall system, in the liquid regime, knowledge of particle
correlations in the intermediate regime will be more demanding as regards the understanding
of experimentally observed phenomena.

In the following, we will present a procedure for solving equation (2) numerically by
using the eigenfunctions of0(�) as basis functions, and study the particle correlations.
SinceN = 3 is the simplest system with many-body effects, we will demonstrate the
procedure explicitly for that case. Only the spin-polarized states are considered. Its
extension to otherN and other spins is straightforward.

Figure 1. Jacobi coordinates for a three-body system.

With N = 3, the Jacobi coordinates that can be assigned to the system are depicted in
figure 1. The hyper-radius and the hyperangle for the system are then defined through√

1

2
η1 = ξ sinα√

2

3
η2 = ξ cosα.

(3)

The potential functionU(�) is then given by

U(�) = βm∗
(

1

cos2 α
+ 1

cos2 α′
+ 1

cos2 α′′

)
. (4)
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In this expression, we have used hyperangles defined in terms of different sets of Jacobi
coordinates as variables to keep it simple. The grand orbital operator reads

0(�) = ∂2

∂α2
+
(

cosα

sinα
− sinα

cosα

)
∂

∂α
−
ˆ̀2(ϕ1)

cos2 α
−
ˆ̀2(ϕ2)

sin2 α
(5)

where ˆ̀(ϕ1) = −i ∂/∂ϕ1, ϕ1 is the polar angle ofη1, etc. 0(�) is translationally invariant,
i.e. 0(�) = 0(�′) = 0(�′′). The eigen-equation0(�)Y (�) = λ0(λ0 + 2)Y (�) can be
solved analytically, with its eigenvalues and eigenfunctions given by

Y[νl1l2](�) = Nνl1l2P l1,l2ν (α)eil1ϕ1eil2ϕ2 (6)

λ0 = 2ν + |l1| + |l2| L = h̄(l1+ l2) (7)

where

Nνl1l2 =
√
(2ν + |l1| + |l2| + 1)ν!(ν + |l1| + |l2|)!/[2π2(ν + |l1|)!(ν + |l2|)!]

is the normalization constant andP l1,l2ν is a Jacobi polynomial, defined by

P l1,l2ν (α) =
ν∑

m=0

(−1)ν−m
(
ν + |l2|
m

)(
ν + |l1|
ν −m

)
(cosα)2m+|l1|(sinα)2(ν−m)+|l2|. (8)

Sinceξ is invariant under any particle permutations, the angular wavefunctionGL(�)

defined in equation (2) should be antisymmetric for fermions. LetÂ = [1 − P(12) −
P(13)−P(23)+P(123)+P(132)]/6 be the antisymmetrization operator, then an antisymmetrized
harmonics withl1 odd (there is no antisymmetric state for evenl1) can be expressed as

ÂY[νl1l2](�) = 1

3
[Y[νl1l2](�)+ Y[νl1l2](�

′)+ Y[νl1l2](�
′′)]. (9)

The translational invariance of0(�) and the total angular momentum operatorL̂ implies
that Y[νl1l2](�

′) andY[νl1l2](�
′′) continue to be their common eigenfunctions with the same

eigenvalues as those given byY[νl1l2](�). (Note that they are no longer eigenstates ofˆ̀(ϕ1)

and ˆ̀(ϕ2).) Therefore they can be expanded in terms ofY[ν ′l′1l
′
2](�), such that

ÂY[νl1l2](�) =
∑

[ν ′l′1l
′
2]

B
[νl1l2]
[ν ′l′1l

′
2]Y[ν ′l′1l

′
2](�) (10)

where the ranges of sums are finite and subject to the constraintsl′1+ l′2 = l1+ l2 = L and
2ν ′ + |l′1| + |l′2| = 2ν + |l1| + |l2| = λ0; the expansion coefficient is given by

B
[νl1l2]
[ν ′l′1l

′
2] =

1

3
[δ[ν ′l′1l

′
2],[νl1l2] + 2〈Y[ν ′l′1l

′
2](�)|Y[νl1l2](�

′)〉]. (11)

In obtaining equation (11), we have made use of the following identity:

〈Y[ν ′l′1l
′
2](�)|Y[νl1l2](�

′′)〉 =
{
〈Y[ν ′l′1l

′
2](�)|Y[νl1l2](�

′)〉 for l′1 odd

−〈Y[ν ′l′1l
′
2](�)|Y[νl1l2](�

′)〉 for l′1 even.

The bracket〈Y[ν ′l′1l
′
2](�)|Y[νl1l2](�

′)〉 defines a transformation matrix for hyperspherical
harmonics with two different sets of angular coordinates as variables. This was first
discussed by Raynal and Revai for harmonics in three space dimensions [10] and later
extended to harmonics in two space dimensions by Ganet al [11]. It is important to
realize that a set of antisymmetric functions obtained from equation (10) are generally
linearly dependent. In practice, we have used the Schmidt procedure to select out a set of
orthonormalized antisymmetric basis states from harmonics with the sameλ0 andL. With
antisymmetric basis states, each term in equation (4) gives the same contributions and the
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Figure 2. Density distributions of the lowest states withβ → 0 on the(α, θ) plane, whereα
ranges from 0 to 90◦ andθ from 0 to 180◦.

matrix elements ofU(�) can be calculated analytically. We diagonalized the Hamiltonian
in a subspace restricted toλ0 < 24 to obtain the eigenvalues and eigenfunctions.

As is well known, permutation symmetry has important effects on the quantum states
of identical particles. For noninteracting systems, this can be described as a constraint
on the ways in which one can fill the single-particle levels (i.e. the Pauli principle). For
strongly correlated systems, the concept of single-particle levels is no longer valid. We
need a new language to describe the constraint globally. For three interacting particles
confined in a potential well, the equilibrium configuration is an equilateral triangle (ET)
with an appropriate side length. In the ground state this configuration should be pursued
to minimize the interaction energy. However, since in the ET configuration a rotation of
120◦ is equivalent to a cyclic permutation of the three particles (an odd permutation), we
haveR(120◦)GL(ET) = −GL(ET). The rotation operatorR(120◦) yields a phase factor of
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Figure 3. As figure 2, except thatβ = 120m∗h̄2.

exp(i 2πL/3). Thus we haveGL(ET) = 0 unlessL = 3k (k being an integer). This implies
that the ET configuration is only accessible in theL = 3k states due to the symmetry
constraint. Therefore it is reasonable to expect that both the average kinetic energy and
interaction energy will be increased by the appearance of such a node inL 6= 3k states.
Another regular configuration of three particles is a dumb-bell with a third particle at the
centre (denoted by CDB). It corresponds to a saddle point of the interaction energy in the
multicoordinate space. The CDB configuration is inaccessible inL = even states since in the
CDB a rotation of 180◦ is equivalent to transposition of two particles at the ends. The CDB
is structurally unstable. It cannot be so important as the ET when the latter is accessible
by symmetries. Other nodes of an antisymmetric wavefunction occur atrij = 0, which
prohibit the contact interaction of two fermions. All of the nodes that we have discussed
here originate completely from symmetries; we call them inherent nodes hereafter. With all
of the inherent nodes in mind, we present the numerical results as follows.
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(i) To see the effect of antisymmetrization, in figure 2 we present the density function

ρ(α, θ) = |GL(�)|2 (12)

on the (α, θ) plane in the limitβ → 0, whereθ = ϕ2 − ϕ1 is the polar angle between
η1 andη2. Only the lowest state of anL is considered. Within the(α, θ) plane, the line
α = 90◦ and the points(30◦, 0) and(30◦, 180◦) correspond tor12 = 0, r23 = 0 andr31 = 0
respectively; they are nodes of all of the antisymmetric wavefunctions. The central point
(45◦, 90◦) corresponds to the ET configuration which is a node of the wavefunction of the
L 6= 3k states. InL = 3k states, the density function peaks at(45◦, 90◦). Hence the ET is
the dominant configuration of these states. The peak is sharper for largerL. The lineα = 0
and the points(60◦, 0) and (60◦, 180◦) correspond to the CDB configurations, which are
nodes of the wavefunction ofL = even states. The CDB is the dominant configuration in
L = 5, 7, 11, . . . states where the ET configuration is inaccessible. In all of the states shown
in figure 2, there is no node except the inherent ones. As a result, states differing inL but
having the same symmetry constraints look similar (compare, for example,L = 4, 8, 10
states). In the excited states, there are some other nodes originating from the dynamics and
representing a more energetic internal motion.

(ii) To see the effects of particle–particle interaction, in figure 3 we present the results
with strong interaction (β = 120m∗h̄2). In comparison with the situation discussed above,
the main feature is retained; the only difference lies in the fact that the density distribution
is now concentrated more at the central point(45◦, 90◦) and in its vicinity, in order to
minimize the interaction energy. Away from the neighbourhood of(45◦, 90◦), ρ(α, θ) tends
to zero. In this case, whether or notrij = 0 and the CDB configuration are inherent nodes
becomes unimportant. The dominant factor is the node representing an ET prohibition which
occurs in theL 6= 3k states. In reference [12], the geometrical structures of a four-electron
quantum dot interacting via a Coulomb potential was studied in the Wigner crystal limit. It
was found there that each state was characterized by several isolated peaks of the density
function, and a mode of internal motion can be identified which transforms one regular
configuration into another. In our present case, except for theL = 3k states, the density
distribution function does not have very sharp peaks but just looks like a volcano; hence the
dominant structures and the mode of internal motion are not very well defined here. This
may be relevant to the details of particle–particle potentials.

(iii) Figure 4 presents theλ-spectrum withβ = 120m∗h̄2. A striking feature is that
the lowest state of anL = 3k sequence has particularly low energy compared to other

Figure 4. The quantumλ-spectrum withβ = 120m∗h̄2.
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sequences. This is entirely due to the favourable ET configuration being accessible in the
state. There is a big energy gap between the lowest and the second states of anL = 3k
sequence. The width of the gap gives a measure to the stability of the lowest state. Since
the lowest states ofL = 3k sequences have similar internal structures, they constitute the
lowest rotational band of a three-electron Wigner molecule. We noticed that by assuming
small zero-point oscillation energy for the relative motion, Johnson and Quiroga obtained
an approximate analytical expression for the eigenvalues (see equation (12) in reference
[8]). On takingβ = 120m∗h̄2, our exact numerical diagonalization givesλ = 38.5 for the
lowest state ofL = 3, while the analytical result isλ = 15.8, indicating that the zero-point
oscillation energy is still the dominant part here and there is a large cancellation in the
analytical result. Further increasing theβ-value may help to improve the analytical result
but the numerical method then becomes computationally too intensive.

To summarize, we have demonstrated a procedure to numerically solve the three-body
problem in hyperspherical coordinates. We have paid special attention to particle correlations
in the lowest states. The separability of the radial part from the angular part has enabled us
to fully and intuitively expose particle correlations in an interacting three-particle system,
while the customary procedure for studying particle correlations by extracting the two-body
density from the full wavefunction may lose some useful information. As we have found
in several previous studies [12, 13], symmetries play a decisive role as regards the low-
lying states of few-body systems, such that we can gain a deep insight into the qualitative
features of low-lying spectrum and density distributions simply by analysing the symmetry
constraints before diagonalizing the Hamiltonian.
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